彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

全讯网ceo| 百家乐网上真钱娱乐| 百家乐单机游戏免费下| 百家乐官网庄6点| 新葡京娱乐场| 威尼斯人娱乐城怎么玩| 百家乐网上真钱娱乐场开户注册 | 黄金会百家乐官网赌城| 澳门玩百家乐的玩法技巧和规则 | 蒙特卡罗娱乐网| 碧桂园太阳城怎么样| 百家乐桌码合| 百家乐注码技术打法| 百家乐永利娱乐网| 百家乐真人娱乐场开户注册 | 百家乐节目视频| 浩博国际娱乐城| 稳赢百家乐的玩法技巧| 澳门百家乐怎么看小路| 猫游棋牌下载| 拉斯维加斯| 百家乐官网投注科学公式| 网上百家乐官网内幕| 涟水县| 全讯网图库| 百家乐正品地址| 百家乐娱乐网备用网址| 百家乐微笑投注| 百家乐如何看面| 百家乐赌博机销售| 大发888充钱| 大发888信誉| 威尼斯人娱乐城百家乐赌博| bet365体育开户| 百家乐官网是骗人的么| 百家乐官网蔬菜配送公司| 网络百家乐怎么作弊| 百家乐那个平好| 大世界娱乐城| 百家乐官网游戏机出千| 百家乐免费是玩|